Semi-Supervised Regression using Spectral Techniques∗

نویسندگان

  • Deng Cai
  • Xiaofei He
  • Jiawei Han
چکیده

Graph-based approaches for semi-supervised learning have received increasing amount of interest in recent years. Despite their good performance, many pure graph based algorithms do not have explicit functions and can not predict the label of unseen data. Graph regularization is a recently proposed framework which incorporates the intrinsic geometrical structure as a regularization term. It can be performed as semi-supervised learning when unlabeled samples are available. However, our theoretical analysis shows that such approach may not be optimal for multi-class problems. In this paper, we propose a novel method, called Spectral Regression (SR). By using spectral techniques, we first compute a set of responses for each sample which respects both the label information and geometrical structure. Once the responses are obtained, the ordinary ridge regression can be apply to find the regression functions. Our proposed algorithm is particularly designed for multi-class problem. Experimental results on two real world classification problems arising in visual and speech recognition demonstrate the effectiveness of our algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Spectral Estimation of Soil Organic Carbon Content through Semi-Supervised Regression

Visible and near infrared (VIS-NIR) spectroscopy has been applied to estimate soil organic carbon (SOC) content with many modeling strategies and techniques, in which a crucial and challenging problem is to obtain accurate estimations using a limited number of samples with reference values (labeled samples). To solve such a challenging problem, this study, with Honghu City (Hubei Province, Chin...

متن کامل

Semi-supervised manifold learning approaches for spoken term verification

In this paper, the application of semi-supervised manifold learning techniques to the task of verifying hypothesized occurrences of spoken terms is investigated. These techniques are applied in a two stage spoken term detection framework where ASR lattices are first generated using a large vocabulary ASR system and hypothesized occurrences of spoken query terms in the lattices are verified in a...

متن کامل

Semi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction

Semi-supervised regression based on the graph Laplacian suffers from the fact that the solution is biased towards a constant and the lack of extrapolating power. Based on these observations, we propose to use the second-order Hessian energy for semi-supervised regression which overcomes both these problems. If the data lies on or close to a low-dimensional submanifold in feature space, the Hess...

متن کامل

Structuration de bases multimédia pour une exploration visuelle. (Structuring multimedia bases for visual exploration)

The large increase in multimedia data volume requires the development of effective solutions for visual exploration of multimedia databases. After reviewing the visualization process involved, we emphasis the need of data structuration. The main objective of this thesis is to propose and study clustering and classification of multimedia database for their visual exploration. We begin with a sta...

متن کامل

Extensions of Gaussian Processes for Ranking: Semi-supervised and Active Learning

Unlabelled examples in supervised learning tasks can be optimally exploited using semi-supervised methods and active learning. We focus on ranking learning from pairwise instance preference to discuss these important extensions, semi-supervised learning and active learning, in the probabilistic framework of Gaussian processes. Numerical experiments demonstrate the capacities of these techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006